超导体的发展史简述
超导体,是指能进行超导传输的导电材料。零电阻和抗磁性是超导体的两个重要特性。人类最初发现物体的超导现象是在1911年。当时荷兰科学家卡·翁纳斯等人发现,某些材料在极低的温度下,其电阻完全消失,呈超导状态。使超导体电阻为零的温度,叫超导临界温度。
1911年
1911年,荷兰科学家卡末林—昂内斯(Heike Kamerlingh-Onnes)用液氦冷却汞,当温度下降到4.2K(﹣268.95℃)时,水银的电阻完全消失,这种现象称为超导电性,此温度称为临界温度。根据临界温度的不同,超导材料可以被分为:高温超导材料和低温超导材料。
1933年
1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。
1973年
1973年,发现超导合金――铌锗合金,其临界超导温度为23.2K(﹣249.95℃),这一记录保持了近13年。
1986年
1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧钡铜氧化物)具有35K(﹣240.15℃)的高温超导性。此后,科学家们几乎每隔几天,就有新的研究成果出现。
同年,美国贝尔实验室研究的超导材料,其临界超导温度达到40K(﹣235.15℃)液氢的“温度壁垒”(40K)被跨越。
1987年
1987年,美国华裔科学家朱经武以及中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K(﹣185.15℃)以上,液氮的“温度壁垒”(77K)也被突破了。
1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K(﹣150.15℃)。从1986-1987年的短短一年多的时间里,临界超导温度提高了近100K。
来自德国、法国和俄罗斯的科学家利用中子散射技术,在高温超导体的一个成员单铜氧层Tl2Ba2CuO6+δ中观察到了所谓的磁共振模式,进一步证实了这种模式在高温超导体中存在的一般性。该发现有助于对铜氧化物超导体机制的研究。
高温超导体具有更高的超导转变温度(通常高于氮气液化的温度),有利于超导现象在工业界的广泛利用。高温超导体的发现迄今已有16年,而对其不同于常规超导体的许多特点及其微观机制的研究,却仍处于相当“初级”的阶段。这一点不仅反映在没有一个单一的理论能够完全描述和解释高温超导体的特性,更反映在缺乏统一的、在各个不同体系上普遍存在的“本征”实验现象。
本期Science所报道的结果意味着中子散射领域里一个长期存在的困惑很有可能得到解决。早在1991年,法国物理学家利用中子散射技术在双铜氧层YBa2Cu3O6+δ超导体单晶中发现了一个微弱的磁性信号。随后的实验证明,这种信号仅在超导体处于超导状态时才显著增强并被称为磁共振模式。
这个发现表明电子的自旋以某种合作的方式产生一种集体的有序运动,而这是常规超导体所不具有的。这种集体运动有可能参与了电子的配对,并对超导机制负责,其作用类似于常规超导体内引起电子配对的晶格振动。但是,在另一个超导体La2-xSrxCuO4+δ(单铜氧层)中,却无法观察到同样的现象。这使物理学家怀疑这种磁共振模式并非铜氧化物超导体的普遍现象。1999年,在Bi2Sr2CaCu2O8+δ单晶上也观察到了这种磁共振信号。但由于Bi2Sr2CaCu2O8+δ与YBa2Cu3O6+δ一样,也具有双铜氧层结构,关于磁共振模式是双铜氧层的特殊表征还是“普遍”现象的困惑并未得到彻底解决。
理想的候选者应该是典型的高温超导晶体,结构尽可能简单,只具有单铜氧层。困难在于,由于中子与物质的相互作用很弱,只有足够大的晶体才可能进行中子散射实验。随着中子散射技术的成熟,对晶体尺寸的要求已降低到0.1cm微量级。晶体生长技术的进步,也使Tl2Ba2CuO6+δ单晶体的尺寸进入毫米量级,而它正是一个理想的候选者。
科学家把300个毫米量级的Tl2Ba2CuO6+δ单晶以同一标准按晶体学取向排列在一起,构成一个“人造”单晶,“提前”达到了中子散射的要求。经过近两个月散射谱的搜集与反复验证,终于以确凿的实验数据显示在这样一个近乎理想的高温超导单晶上也存在磁共振模式。这一结果说明磁共振模式是高温超导的一个普遍现象。而La2-xSrxCuO4+δ体系上磁共振模式的缺席只是“普遍”现象的例外,这可能与其结构的特殊性有关。
关于磁共振模式及其与电子间相互作用的理论和实验研究一直是高温超导领域的热点之一,上述结果将引起许多物理学家的关注与兴趣。
20世纪80年代是超导电性的探索与研究的黄金年代。1981年合成了有机超导体,1986年缪勒和柏诺兹发现了一种成分为钡、镧、铜、氧的陶瓷性金属氧化物LaBaCuO4,其临界温度约为35K。由于陶瓷性金属氧化物通常是绝缘物质,因此这个发现的意义非常重大,缪勒和柏诺兹因此而荣获了1987年度诺贝尔物理学奖。
1987年在超导材料的探索中又有新的突破,美国休斯顿大学物理学家朱经武小组与中国科学院物理研究所赵忠贤等人先后研制成临界温度约为90K的超导材料YBCO(钇钡铜氧)。
1988年
1988年初日本研制成临界温度达110K的Bi-Sr-Ca-Cu-O超导体。至此,人类终于实现了液氮温区超导体的梦想,实现了科学史上的重大突破。这类超导体由于其临界温度在液氮温度(77K)以上,因此被称为高温超导体。
自从高温超导材料发现以后,一阵超导热席卷了全球。科学家还发现铊系化合物超导材料的临界温度可达125K(﹣150.15℃)汞系化合物超导材料的临界温度则高达135K。如果将汞置于高压条件下,其临界温度将能达到难以置信的164K。
1997年
1997年,研究人员发现,金铟合金在接近绝对零度时既是超导体同时也是磁体。1999年科学家发现钌铜化合物在45K(﹣230.15℃)时具有超导电性。由于该化合物独特的晶体结构,它在计算机数据存储中的应用潜力将是非常巨大的。
2007年
自2007年12月开始,中国科学院物理研究所的陈根富博士已投入到镧氧铁砷非掺杂单晶体的制备中。2007年2月18日,日本东京工业大学的细野秀雄教授和他的合作者在《美国化学会志》上发表了一篇两页的文章,指出氟掺杂镧氧铁砷化合物在零下247.15℃时即具有超导电性。在长期研究中保持着跨界关注习惯的陈根富和王楠林研究员立即捕捉到了这一消息的价值,王楠林小组迅速转向制作掺杂样品,他们在一周内实现了超导并测量了基本物理性质。
几乎与此同时,物理所闻海虎研究组通过在镧氧铁砷材料中用二价金属锶替换三价的镧,发现有临界温度为零下248.15℃以上的超导电性。
2008年
2008年3月25日和3月26日,中国科学技术大学陈仙辉组和物理所王楠林组分别独立发现临界温度超过零下233.15℃的超导体,突破麦克米兰极限,证实为非传统超导。
2008年3月29日,中国科学院院士、物理所研究员赵忠贤领导的小组通过氟掺杂的镨氧铁砷化合物的超导临界温度可达零下221.15℃,4月初该小组又发现无氟缺氧钐氧铁砷化合物在压力环境下合成超导临界温度可进一步提升至零下218.15℃。
2012年
2012年9月,德国莱比锡大学的研究人员宣布了一项进展:石墨颗粒能在室温下表现出超导性。研究人员将石墨粉浸入水中后滤除干燥,置于磁场中,结果小一部分(大约占0.01%)样本表现出抗磁性,而抗磁性是超导材料的标志性特征之一。 虽然表现出超导性的石墨颗粒很少但这一发现仍然具有重要意义。迄今为止,超导体只有在温度低于-110°C下才能够发挥作用。如果像石墨粉这样便宜且容易获得的材料真能在室温下实现超导,将引发一次新的现代工业革命。
2014年
我国科学家发现了一种新的铁基超导材料锂铁氢氧铁硒化合物,其超导转变温度高达40K(零下233.15摄氏度)以上,在确定该新材料的晶体结构后,科学家发现其超导电性和反铁磁共存。
专家指出,这是世界上首次利用水热法发现铁硒类新型高温超导材料,堪称铁基超导研究的重大进展,为相关体系新超导体的探索提供了新的研究思路。同时,该新超导体所具有的高超导转变温度、空气中稳定等优点,为进一步的实验研究提供了可能,并为探索铁基高温超导的内在物理机制提供了理想的材料体系。该研究由中国科技大学合肥微尺度物质科学国家实验室陈仙辉教授研究组完成,相关成果在线发表于2014年12月15日的国际权威杂志《自然—材料》。
《物质的密度》教学反思一
凸透镜成像实验设计教学反思
高三物理课教学反思
初中物理复习课中创设生活情景的心得
对高中物理课的教学反思
《平面镜成像》教学反思
高三物理复习教学反思
“楞次定律”一课教学的反思
声音的产生与传播教学反思
《万有引力定律》应用(2)教学側记
优化课堂教学过程,提高课堂教学质量
八年级物理下册期中考试试卷质量分析
引导学生探究创新,让物理生活化
《凸透镜成像》教学反思
八年级物理上册《平面镜成像》教学反思
力的平衡教后反思
第一学期八年级物理期中考试试卷分析
“光的本性”教学设计思路及教学反思
八年级物理下册《牛顿第一定律》教学反思
批改物理试卷后的2点反思
平面镜成像教学反思一
初三物理一道回声问题的教学反思
凸透镜成像教学反思一
高三物理备课组教学总结与反思
八年级物理上学期第三周教学反思
在不断总结中推进课改
八年级物理下学期期中考试试卷分析
《光的折射像》教学反思
光的反射教学反思
第二学期八年级物理期中质量检测试卷分析
不限 |
物理教案 |
物理课件 |
物理试题 |
不限 |
不限 |
上册 |
下册 |
不限 |
发布时间 |
下载量 |