1.如图5-5-11所示,在匀速转动的圆筒内壁上紧靠着一个物体一起运动,物体所受向心力是( )
A.重力 B.弹力
C.静摩擦力 D.滑动摩擦力图5-5-11
解析:选B.对物体进行受力分析可知,物体在竖直方向受到的重力和静摩擦力二力平衡,水平方向受到的弹力提供物体做圆周运动的向心力.故选项B正确.
2.关于地球上的物体随地球自转的向心加速度的大小,下列说法正确的是( )
A.在赤道上向心加速度最大
B.在两极向心加速度最大
C.在地球上各处向心加速度一样大
D.随着纬度的升高,向心加速度的值逐渐减小
解析:选AD.在地球上的物体,角速度ω都相同,转动半径r随纬度的升高而减小.由向心加速度公式a=ω2r可判断出A、D选项正确.
3.(2015年天津模拟)关于向心加速度,以下说法正确的是( )
A.它描述了角速度变化的快慢
B.它描述了线速度大小变化的快慢
C.它描述了线速度方向变化的快慢
D.公式a=只适用于匀速圆周运动
解析:选C.由于向心加速度只改速度的方向,不改变速度的大小,所以向心加速度是描述线速度方向变化快慢的物理量,选项C正确;公式a=不仅适用于匀速圆周运动,也适用于变速圆周运动,选项D错误.
4.如图5-5-12所示,A、B随水平圆盘绕轴匀速转动,物体B在水平方向所受的作用力有( )
A.圆盘对B及A对B的摩擦力,两力都指向圆心
B.圆盘对B的摩擦力指向圆心,A对B的摩擦力背离圆心图5-5-12
C.圆盘对B及A对B的摩擦力和向心力
D.圆盘对B的摩擦力和向心力
解析:选B.A随B做匀速圆周运动,它所需的向心力由B对A的静摩擦力来提供,因此B对A的摩擦力指向圆心,A对B的摩擦力背离圆心,圆盘对B的摩擦力指向圆心,才能使B受到指向圆心的合力,所以正确选项为B.
5.一质量为m的物体,做半径为R的匀速圆周运动,其线速度为v.若保持其线速度大小不变,当其质量变为原来的2倍时,其向心力变为原来的6倍,则该物体做圆周运动的半径变为________R.若保持运动半径R不变,当其质量变为原来的2倍时,其向心力变为原来的8倍,其线速度变为________v.
解析:设原来的向心力为F=m,则F1=2m=6F,解得r1=R.F2=2m=8F,解得v2=2v.
答案: 2
一、选择题
1.如图5-5-13所示,为A、B两质点做匀速圆周运动的向心加速度随半径变化的图象,其中A为双曲线的一个分支,由图象可知( )
A.A物体运动的线速度大小不变
B.A物体运动的角速度大小不变图5-5-13
C.B物体运动的角速度大小不变
D.B物体运动的线速度大小不变
解析:选AC.图象中,B表示a与r成正比,A表示a与r成反比.由向心加速度的不同表达式知,这两者并不矛盾,当ω一定时,a=ω2r,即ar;当v一定时,a=,即a,所以选A、C.
2.如图5-5-14所示,用一本书托着黑板擦在竖直平面内做匀速圆周运动(平动),先后经过A、B、C、D四点,A、B和C、D处于过圆心的水平线和竖直线上,设书受到的压力为FN,对黑板擦的静摩擦力为F静,则( )
A.从C到D,F静减小,FN增大
B.从D到A,F静增大,FN减小图5-5-14
C.在A、C两个位置,F静最大,FN=mg
D.在B、D两个位置,FN有最大值
解析:选ABC.由C到D,F静由m变为零,FN由mg变为mg+m,A正确;同时,B也正确;在A、C位置,F静最大,FN=mg,C正确;在B、D位置,B位置FN最小,D位置FN最大,D错误.故选A、B、C.
3.小金属球质量为m,用长L的轻悬线固定于O点,在O点的正下方处钉有一颗钉子P,把悬线沿水平方向拉直,如图5-5-15所示,无初速度释放,当悬线碰到钉子后的瞬间(设线没有断),则( ) 图5-5-15
A.小球的角速度突然增大
B.小球的线速度突然减小到零
C.小球的向心加速度突然增大
D.悬线的张力突然增大
解析:选ACD.绕过钉子的瞬间,线速度v并不会突变,但半径r骤减,导致角速度ω=突然增大,同时向心加速度a=增大,所以绳子张力也变大,故A、C、D正确.
4.如图5-5-16所示,天车上吊着两个质量都是m的工件A和B,系A的吊绳较短,系B的吊绳较长,若天车运动到P处突然停止,则两吊绳所受的拉力FA和FB的大小关系是( )
A.FA>FB
B.FAmg
解析:选A.天车突然停止后,A、B两物体由于惯性开始摆动而做圆周运动,线速度相同,由F-mg=得F=mg+,由于rB>rA,故FA>FB,故选A.
5.如图5-5-17所示为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧为一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传运过程中,皮带不打滑,则( )
图5-5-17
A.a点与b点的向心加速度大小相等
B.a点与c点的向心加速度大小相等
C.a点与d点的向心加速度大小相等
D.a、b、c、d四点,加速度最小的是b点
解析:选CD.由图可知,a点与c点是与皮带接触的两个点,所以在传动过程中二者的线速度相等,即va=vc,又v=ωr,所以ωar=ωc·2r,即ωa=2ωc.而b、c、d三点在同一轮轴上,它们的角速度相等,则ωb=ωc=ωd=ωa.又vb=ωb·r=ωar=va,
向心加速度:aa=ωr;
ab=ω·r=(ωa)2·r=ωr=aa;
ac=ω·2r=(ωa)2·2r=ωr=aa;
ad=ω·4r=(ωa)2·4r=ωr=aa.
故选C、D.
6.如图5-5-18所示,两个用相同材料制成的靠摩擦转动的轮A和B水平放置,两轮半径RA=2RB.当主动轮A匀速转动时,在A轮边缘上放置的小木块恰能静止在A轮边缘上.若将小木块放在B轮上,欲使木块相对B轮也静止,则木块距B轮转轴的最大距离为( ) 图5-5-18
A.RB/4 B.RB/3
C.RB/2 D.RB
解析:选C.A、B两轮对木块最大静摩擦力相同,由RA=2RB和v=ωr知ωB=2ωA,由向心力公式F=mrω2,知木块在B轮上圆周运动的半径应是在A轮上的,故r=RB/2.故选C.
7.(2015年泰安高一检测)如图5-5-19所示OO′为竖直转轴,MN为固定在OO′上的水平光滑杆,有两个质量相同的金属球A、B套在水平杆上,AC、BC为抗拉能力相同的两根细线,C端固定在转轴OO′上,当绳拉直时,A、B两球转动半径之比恒为21,当转轴角速度逐渐增大时( )
A.AC线先断 B.BC线先断图5-5-19
C.两线同时断 D.不能确定哪段线先断
解析:选A.旋转时,A、B两物体角速度相同ωA=ωB,由于rA=2rB,因此向心力FA=2FB,两线承受能力一样,根据FT=,θ为线与水平方向夹角,因此推得是AC先达最大值,即AC先断.
8.如图5-5-20所示,在水平转台上放一个质量M=2 kg的木块,它与转台间的最大静摩擦力Fmax=6.0 N,绳的一端系挂木块,穿过转台的中心孔O(孔光滑),另一端悬挂一个质量m=1.0 kg的物体,当转台以角速度ω=5 rad/s匀速转动时,木块相对转台静止,则木块到O点的距离可以是(g取10 m/s2,M、m均视为质点)( )
A.0.04 m B.0.08 m
C.0.16 m D.0.32 m图5-5-20
解析:选BCD.当M有远离轴心运动趋势时有
mg+Fmax=Mω2rmax,
当M有靠近轴心运动趋势时,有
mg-Fmax=Mω2rmin,
解得rmax=0.32 m,rmin=0.08 m,
即0.08 m≤r≤0.32 m.故选B、C、D.
二、非选择题
9.
有一种叫“飞椅”的游乐项目,示意图如图5-5-21所示,长为L的钢绳一端系着座椅,另一端固定在半径为r的水平转盘边缘.转盘可绕穿过其中心的竖直轴转动.当转盘以角速度ω匀速转动时,钢绳与转轴在同一竖直平面内,与竖直方向的夹角为θ.不计钢绳的重力,求转盘转动的角速度ω与夹角θ的关系.
解析:由向心力公式F=mω2r得
mgtanθ=mω2(r+Lsinθ),则ω= .图5-5-21
答案:ω=
10.在光滑水平面上钉有两个铁钉A和B,相距0.1 m,长1 m的细线一端系在A上,另一端系一个质量为0.5 kg的小球,小球初始位置在A、B的连线上的一侧如图5-5-22所示,现给小球以垂直于图5-5-22线的2 m/s的速度做圆周运动,如果细线承受最大拉力为7 N,从开始运动到线断裂经历多长时间?
解析:根据已知条件,假设绳上张力达到最大时,应满足T=m=7 N,其中v由于保持不变可得v=2 m/s,因此推得R= m.联系绳长条件,球绕转半径由1 m逐渐减少至 m,之前每隔π圆心角,半径依次减少0.1 m,即AB间距离,具体数值从1 m,0.9 m,0.8 m,…,直至0.3 m为止,所以总时间t=++…+=++…+=(R1+R2+…+R8)=(1+0.9+…+0.3)=2.6π(s).
答案:2.6π s
11.如图5-5-23所示,定滑轮的半径r=2 cm,绕在滑轮上的细线悬挂着一个重物,由静止开始释放,测得重物以加速度a=2 m/s2做匀加速运动,在重物由静止下落1 m的瞬间.
(1)滑轮边缘上的P点做圆周运动的角速度是多大?
(2)P点的向心加速度是多大?
解析:(1)根据公式v2=2as,
v== m/s=2 m/s. 图5-5-23
由公式v=ωr得
ω== rad/s=100 rad/s.
(2)由公式a=知a= m/s2=200 m/s2.
答案:(1)100 rad/s (2)200 m/s2
12.如图5-5-24所示,3个质量相等的小球A、B、C固定在轻质硬杆上,而且OA=AB=BC,现将该装置放在光滑水平桌面上,使杆绕过O的竖直轴匀速转动,设OA、AB、BC上的拉力分别为F1、F2、F3,则F1、F2、F3三力大小之比为多少?
图5-5-24
解析:设OA=AB=BC=L,
由牛顿第二定律对A球有F1-F2=mLω2
对B球有F2-F3=m·2Lω2
对C球有F3=m·3Lω2
由解得F1F2∶F3=65∶3.
答案:65∶3
古诗词、成语和俗语中的光学知识
《光学》试卷讲评课
奇异的天空
奇妙的大气光学折射现象
“光的反射”教学设计
“光的传播”教学设计
“光的折射”教学设计
“平面镜成像”教学设计
日食和月食
《光的传播》教学设计
《光现象》学习指导
“光的颜色”教学设计
自制“开水报警器”
生态杀手之光污染
《光的折射》说课稿
《噪声的危害与控制》课件
民谚、俗语、古诗中的物理知识
光污染的危害及防治措施
光速是怎样测出来的
自制教具“三棱柱水槽”
《话筒和听筒》课件
《光的传播》课堂实录
“看不见的光”教学设计
“光的直线传播”课堂教学实录
“光现象”教学设计
《光是如何传播的》创新教学设计
“光的传播”教学案例
《光的折射》教学设计
自制示波器“看声音”
实像还是虚像
不限 |
物理教案 |
物理课件 |
物理试题 |
不限 |
不限 |
上册 |
下册 |
不限 |
发布时间 |
下载量 |